mirror of
https://github.com/yv1ing/ShotRDP.git
synced 2025-09-16 15:10:57 +08:00
73 lines
2.1 KiB
Python
73 lines
2.1 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
|
||
|
||
# 轻量双通道注意力
|
||
class LiteDualAttention(nn.Module):
|
||
def __init__(self, in_channels):
|
||
super().__init__()
|
||
self.channel_attn = nn.Sequential(
|
||
nn.AdaptiveAvgPool2d(1),
|
||
nn.Conv2d(in_channels, in_channels // 16, 1, bias=False),
|
||
nn.SiLU(),
|
||
nn.Conv2d(in_channels // 16, in_channels, 1, bias=False),
|
||
nn.Sigmoid()
|
||
)
|
||
|
||
self.spatial_attn = nn.Sequential(
|
||
nn.Conv2d(2, 1, 5, padding=2, bias=False),
|
||
nn.Sigmoid()
|
||
)
|
||
|
||
def forward(self, x):
|
||
# 通道加权
|
||
ca = self.channel_attn(x) * x
|
||
|
||
# 空间特征统计(均值+标准差)
|
||
stats = torch.cat([
|
||
x.mean(dim=1, keepdim=True),
|
||
x.std(dim=1, keepdim=True)
|
||
], dim=1)
|
||
|
||
# 空间加权(5x5卷积生成单通道注意力)
|
||
sa = self.spatial_attn(stats) * ca
|
||
return sa
|
||
|
||
|
||
class CNNClassifier(nn.Module):
|
||
def __init__(self, num_classes):
|
||
super().__init__()
|
||
self.features = nn.Sequential(
|
||
nn.Conv2d(3, 32, 3, stride=2, padding=1, bias=False),
|
||
LiteDualAttention(32),
|
||
nn.BatchNorm2d(32),
|
||
nn.Hardswish(inplace=True),
|
||
|
||
nn.Conv2d(32, 48, 3, stride=2, padding=1, bias=False),
|
||
LiteDualAttention(48),
|
||
nn.BatchNorm2d(48),
|
||
nn.Hardswish(inplace=True),
|
||
|
||
nn.Conv2d(48, 64, 3, stride=2, padding=1, bias=False),
|
||
LiteDualAttention(64),
|
||
nn.BatchNorm2d(64),
|
||
nn.Hardswish(inplace=True),
|
||
|
||
nn.Conv2d(64, 96, 3, padding=2, dilation=2, bias=False),
|
||
LiteDualAttention(96),
|
||
nn.BatchNorm2d(96),
|
||
nn.Hardswish(inplace=True)
|
||
)
|
||
|
||
self.classifier = nn.Sequential(
|
||
nn.AdaptiveAvgPool2d(1),
|
||
nn.Flatten(),
|
||
nn.Linear(96, 256),
|
||
nn.Hardswish(inplace=True),
|
||
nn.Dropout(0.3),
|
||
nn.Linear(256, num_classes)
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.classifier(self.features(x))
|