mirror of
https://github.com/yv1ing/ShotRDP.git
synced 2025-09-16 15:10:57 +08:00
加入CNN+Attention的图像分类模块
This commit is contained in:
48
nn/model.py
Normal file
48
nn/model.py
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
# 更简化的注意力模块
|
||||||
|
class UltraSimplifiedAttention(nn.Module):
|
||||||
|
def __init__(self, in_channels):
|
||||||
|
super(UltraSimplifiedAttention, self).__init__()
|
||||||
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.fc = nn.Sequential(
|
||||||
|
nn.Linear(in_channels, in_channels // 64, bias=False),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(in_channels // 64, in_channels, bias=False),
|
||||||
|
nn.Sigmoid()
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, _, _ = x.size()
|
||||||
|
y = self.avg_pool(x).view(b, c)
|
||||||
|
y = self.fc(y).view(b, c, 1, 1)
|
||||||
|
return x * y.expand_as(x)
|
||||||
|
|
||||||
|
|
||||||
|
# CNN结合更简化的注意力机制模型
|
||||||
|
class CNNWithUltraSimplifiedAttention(nn.Module):
|
||||||
|
def __init__(self, num_classes):
|
||||||
|
super(CNNWithUltraSimplifiedAttention, self).__init__()
|
||||||
|
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
|
||||||
|
self.attention1 = UltraSimplifiedAttention(16)
|
||||||
|
self.relu1 = nn.ReLU(inplace=True)
|
||||||
|
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||||
|
|
||||||
|
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
|
||||||
|
self.attention2 = UltraSimplifiedAttention(32)
|
||||||
|
self.relu2 = nn.ReLU(inplace=True)
|
||||||
|
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||||
|
|
||||||
|
self.fc_input_dim = 32 * 256 * 200
|
||||||
|
self.fc1 = nn.Linear(self.fc_input_dim, 128)
|
||||||
|
self.relu3 = nn.ReLU(inplace=True)
|
||||||
|
self.fc2 = nn.Linear(128, num_classes)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.pool1(self.relu1(self.attention1(self.conv1(x))))
|
||||||
|
x = self.pool2(self.relu2(self.attention2(self.conv2(x))))
|
||||||
|
x = x.view(-1, self.fc_input_dim)
|
||||||
|
x = self.relu3(self.fc1(x))
|
||||||
|
x = self.fc2(x)
|
||||||
|
return x
|
||||||
35
nn/predict.py
Normal file
35
nn/predict.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
import torch
|
||||||
|
from torchvision import transforms
|
||||||
|
from model import CNNWithUltraSimplifiedAttention
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
# 加载预训练模型
|
||||||
|
model_path = './rdp_model.pth'
|
||||||
|
model = CNNWithUltraSimplifiedAttention(4)
|
||||||
|
model.load_state_dict(torch.load(model_path, weights_only=True))
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
print(f"Model loaded from {model_path}")
|
||||||
|
|
||||||
|
|
||||||
|
# 数据预处理
|
||||||
|
transform = transforms.Compose([
|
||||||
|
transforms.Resize((1024, 800)),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
# 预测截图类别
|
||||||
|
image_path = './test.png'
|
||||||
|
class_labels = ['Windows 7', 'Windows 10', 'Windows Server 2008', 'Windows Server 2012']
|
||||||
|
|
||||||
|
image = Image.open(image_path).convert('RGB')
|
||||||
|
image = transform(image).unsqueeze(0).to(device)
|
||||||
|
|
||||||
|
output = model(image)
|
||||||
|
_, predicted = torch.max(output.data, 1)
|
||||||
|
print(f"File name: {image_path}, Predicted result: {class_labels[predicted.item()]}, Output: {output.data}")
|
||||||
92
nn/train.py
Normal file
92
nn/train.py
Normal file
@@ -0,0 +1,92 @@
|
|||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
import warnings
|
||||||
|
from tqdm import tqdm
|
||||||
|
from torchvision import datasets, transforms
|
||||||
|
from torch.utils.data import DataLoader, random_split
|
||||||
|
from model import CNNWithUltraSimplifiedAttention
|
||||||
|
|
||||||
|
|
||||||
|
warnings.filterwarnings("ignore", category=UserWarning)
|
||||||
|
|
||||||
|
|
||||||
|
# 数据预处理
|
||||||
|
transform = transforms.Compose([
|
||||||
|
transforms.Resize((1024, 800)),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
|
||||||
|
# 加载数据集
|
||||||
|
data_dir = './datasets'
|
||||||
|
full_dataset = datasets.ImageFolder(data_dir, transform=transform)
|
||||||
|
|
||||||
|
# 划分训练集和测试集
|
||||||
|
train_size = int(0.8 * len(full_dataset))
|
||||||
|
test_size = len(full_dataset) - train_size
|
||||||
|
train_dataset, test_dataset = random_split(full_dataset, [train_size, test_size])
|
||||||
|
|
||||||
|
# 创建数据加载器
|
||||||
|
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
||||||
|
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)
|
||||||
|
|
||||||
|
# 初始化模型
|
||||||
|
num_classes = len(full_dataset.classes)
|
||||||
|
model = CNNWithUltraSimplifiedAttention(num_classes)
|
||||||
|
|
||||||
|
# 初始化损失函数和优化器
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# 训练模型
|
||||||
|
num_epochs = 4
|
||||||
|
model.to(device)
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
model.train()
|
||||||
|
running_loss = 0.0
|
||||||
|
train_loader_tqdm = tqdm(train_loader, desc=f'Epoch {epoch + 1}/{num_epochs}', unit='batch')
|
||||||
|
for i, (images, labels) in enumerate(train_loader_tqdm):
|
||||||
|
images, labels = images.to(device), labels.to(device)
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
outputs = model(images)
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
running_loss += loss.item()
|
||||||
|
train_loader_tqdm.set_postfix(loss=running_loss / (i + 1))
|
||||||
|
|
||||||
|
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader)}')
|
||||||
|
|
||||||
|
# 保存模型
|
||||||
|
model_path = 'rdp_model.pth'
|
||||||
|
torch.save(model.state_dict(), model_path)
|
||||||
|
|
||||||
|
# 测试模型
|
||||||
|
load_saved_model = True
|
||||||
|
if load_saved_model and os.path.exists(model_path):
|
||||||
|
model = CNNWithUltraSimplifiedAttention(num_classes)
|
||||||
|
model.load_state_dict(torch.load(model_path, weights_only=True))
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
|
||||||
|
test_loader_tqdm = tqdm(test_loader, desc='Testing', unit='batch')
|
||||||
|
with torch.no_grad():
|
||||||
|
for images, labels in test_loader_tqdm:
|
||||||
|
images, labels = images.to(device), labels.to(device)
|
||||||
|
outputs = model(images)
|
||||||
|
_, predicted = torch.max(outputs.data, 1)
|
||||||
|
total += labels.size(0)
|
||||||
|
correct += (predicted == labels).sum().item()
|
||||||
|
test_loader_tqdm.set_postfix(accuracy=100 * correct / total)
|
||||||
|
|
||||||
|
print(f'Accuracy on test set: {100 * correct / total}%')
|
||||||
Reference in New Issue
Block a user