mirror of
https://github.com/yv1ing/ShotRDP.git
synced 2025-09-16 15:10:57 +08:00
加入CNN+Attention的图像分类模块
This commit is contained in:
92
nn/train.py
Normal file
92
nn/train.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import warnings
|
||||
from tqdm import tqdm
|
||||
from torchvision import datasets, transforms
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
from model import CNNWithUltraSimplifiedAttention
|
||||
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
# 数据预处理
|
||||
transform = transforms.Compose([
|
||||
transforms.Resize((1024, 800)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
# 加载数据集
|
||||
data_dir = './datasets'
|
||||
full_dataset = datasets.ImageFolder(data_dir, transform=transform)
|
||||
|
||||
# 划分训练集和测试集
|
||||
train_size = int(0.8 * len(full_dataset))
|
||||
test_size = len(full_dataset) - train_size
|
||||
train_dataset, test_dataset = random_split(full_dataset, [train_size, test_size])
|
||||
|
||||
# 创建数据加载器
|
||||
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)
|
||||
|
||||
# 初始化模型
|
||||
num_classes = len(full_dataset.classes)
|
||||
model = CNNWithUltraSimplifiedAttention(num_classes)
|
||||
|
||||
# 初始化损失函数和优化器
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 训练模型
|
||||
num_epochs = 4
|
||||
model.to(device)
|
||||
for epoch in range(num_epochs):
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
train_loader_tqdm = tqdm(train_loader, desc=f'Epoch {epoch + 1}/{num_epochs}', unit='batch')
|
||||
for i, (images, labels) in enumerate(train_loader_tqdm):
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
train_loader_tqdm.set_postfix(loss=running_loss / (i + 1))
|
||||
|
||||
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader)}')
|
||||
|
||||
# 保存模型
|
||||
model_path = 'rdp_model.pth'
|
||||
torch.save(model.state_dict(), model_path)
|
||||
|
||||
# 测试模型
|
||||
load_saved_model = True
|
||||
if load_saved_model and os.path.exists(model_path):
|
||||
model = CNNWithUltraSimplifiedAttention(num_classes)
|
||||
model.load_state_dict(torch.load(model_path, weights_only=True))
|
||||
model.to(device)
|
||||
|
||||
model.eval()
|
||||
correct = 0
|
||||
total = 0
|
||||
|
||||
test_loader_tqdm = tqdm(test_loader, desc='Testing', unit='batch')
|
||||
with torch.no_grad():
|
||||
for images, labels in test_loader_tqdm:
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
test_loader_tqdm.set_postfix(accuracy=100 * correct / total)
|
||||
|
||||
print(f'Accuracy on test set: {100 * correct / total}%')
|
||||
Reference in New Issue
Block a user