mirror of
https://github.com/yv1ing/ShotRDP.git
synced 2025-09-16 15:10:57 +08:00
优化神经网络,缩减模型大小
This commit is contained in:
72
gui/model.py
Normal file
72
gui/model.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# 轻量双通道注意力
|
||||
class LiteDualAttention(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.channel_attn = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d(1),
|
||||
nn.Conv2d(in_channels, in_channels // 16, 1, bias=False),
|
||||
nn.SiLU(),
|
||||
nn.Conv2d(in_channels // 16, in_channels, 1, bias=False),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
|
||||
self.spatial_attn = nn.Sequential(
|
||||
nn.Conv2d(2, 1, 5, padding=2, bias=False),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# 通道加权
|
||||
ca = self.channel_attn(x) * x
|
||||
|
||||
# 空间特征统计(均值+标准差)
|
||||
stats = torch.cat([
|
||||
x.mean(dim=1, keepdim=True),
|
||||
x.std(dim=1, keepdim=True)
|
||||
], dim=1)
|
||||
|
||||
# 空间加权(5x5卷积生成单通道注意力)
|
||||
sa = self.spatial_attn(stats) * ca
|
||||
return sa
|
||||
|
||||
|
||||
class CNNClassifier(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super().__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 32, 3, stride=2, padding=1, bias=False),
|
||||
LiteDualAttention(32),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.Hardswish(inplace=True),
|
||||
|
||||
nn.Conv2d(32, 48, 3, stride=2, padding=1, bias=False),
|
||||
LiteDualAttention(48),
|
||||
nn.BatchNorm2d(48),
|
||||
nn.Hardswish(inplace=True),
|
||||
|
||||
nn.Conv2d(48, 64, 3, stride=2, padding=1, bias=False),
|
||||
LiteDualAttention(64),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.Hardswish(inplace=True),
|
||||
|
||||
nn.Conv2d(64, 96, 3, padding=2, dilation=2, bias=False),
|
||||
LiteDualAttention(96),
|
||||
nn.BatchNorm2d(96),
|
||||
nn.Hardswish(inplace=True)
|
||||
)
|
||||
|
||||
self.classifier = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d(1),
|
||||
nn.Flatten(),
|
||||
nn.Linear(96, 256),
|
||||
nn.Hardswish(inplace=True),
|
||||
nn.Dropout(0.3),
|
||||
nn.Linear(256, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.classifier(self.features(x))
|
||||
Reference in New Issue
Block a user