mirror of
https://github.com/yv1ing/ShotRDP.git
synced 2025-09-16 15:10:57 +08:00
封装识别接口
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -4,7 +4,7 @@
|
||||
# Work dir and files
|
||||
.idea
|
||||
.venv
|
||||
__pycache__
|
||||
__pycache__/
|
||||
|
||||
# Binaries for programs and plugins
|
||||
*.exe
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import ctypes
|
||||
from predict import solve
|
||||
|
||||
|
||||
def shot(target, width, height):
|
||||
@@ -20,9 +21,11 @@ def shot(target, width, height):
|
||||
if error_ptr:
|
||||
print(ctypes.string_at(error_ptr).decode())
|
||||
else:
|
||||
result = ctypes.string_at(data, length.value)
|
||||
with open('./screen/0.png', 'wb') as f:
|
||||
f.write(result)
|
||||
image_bytes = ctypes.string_at(data, length.value)
|
||||
result = solve(image_bytes)
|
||||
|
||||
# with open('./screen/0.png', 'wb') as f:
|
||||
# f.write(result)
|
||||
|
||||
lib.Free(data)
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
from torchvision import transforms
|
||||
from model import CNNClassifier
|
||||
from PIL import Image
|
||||
|
||||
from io import BytesIO
|
||||
|
||||
class_labels = ['Windows 7', 'Windows 10', 'Windows Server 2008', 'Windows Server 2012']
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
@@ -20,13 +20,27 @@ transform = transforms.Compose([
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
if __name__ == '__main__':
|
||||
image_path = './screen/0.png'
|
||||
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = transform(image).unsqueeze(0).to(device)
|
||||
def solve(image_bytes):
|
||||
_image = Image.open(BytesIO(image_bytes)).convert('RGB')
|
||||
_image = transform(_image).unsqueeze(0).to(device)
|
||||
|
||||
output = model(image)
|
||||
_, predicted = torch.max(output.data, 1)
|
||||
_output = model(_image)
|
||||
_, _predicted = torch.max(_output.data, 1)
|
||||
|
||||
print(f"File name: {image_path}, Predicted result: {class_labels[predicted.item()]}, Output: {output.data}")
|
||||
_result = class_labels[_predicted.item()]
|
||||
|
||||
print(f"\nPredicted result: {_result}")
|
||||
return _result
|
||||
|
||||
|
||||
# if __name__ == '__main__':
|
||||
# image_path = './screen/0.png'
|
||||
#
|
||||
# image = Image.open(image_path).convert('RGB')
|
||||
# image = transform(image).unsqueeze(0).to(device)
|
||||
#
|
||||
# output = model(image)
|
||||
# _, predicted = torch.max(output.data, 1)
|
||||
#
|
||||
# print(f"File name: {image_path}, Predicted result: {class_labels[predicted.item()]}, Output: {output.data}")
|
||||
|
||||
Reference in New Issue
Block a user